

TECHNICAL DATA SHEET

Content	Page
Product description	2
Properties and benefits	2
Applications and intended use	3
Handling and storage	3
Reactivity	3
Application in concrete	4
Setting instruction	4
Cleaning	6
Setting parameter	6
Design values	7
Recommended loads	9
Application in masonry	10
Setting instruction	10
Cleaning	11
Load values	12

TECHNICAL DATA SHEET

Product description

The P is a 2-component reaction resin mortar based on polyester and will be delivered in a 2-C cartridge (ST - standard cartridge; SF-foil tube cartridge) system. This product may be used in combination of a hand-, battery-, or pneumatic tool and a static mixer. It was designed as a cost-effective alternative for the anchoring of threaded rods and internal threaded rod sleeves for non-approved applications. By using a screen sleeve, an easy and save application in hollow bricks is guaranteed. The P product is characterised by good applications with an ambiance temperature up to 80°C.

Properties and benefits

- Application in uncracked concrete, solid brick and hollow brick with comercial threaded rods
- overhead application
- Suitable for attachment points close to the edge, since anchoring is free of expansion forces
- Application in masonry
- · high bending- and pressure strength
- reduced chemical resistance
- Cartridge can be reused up to the end of the shelf life by replacing the static mixer or resealing cartridge with the screw cap
- · Mechanical properties acc. to EN 196 Part1
 - + Density: 1,67 kg/dm²
 - + Compressive strength: 108 N/mm²
 - + Bending strength: 56 N/mm²
 - + Dynamic modulus of elasticity: 3300 N/mm²

Applications samples

Suitable for the fixation of facades, roofs, wood construction, metal construction; metal profils, console, railing, sanitary devices, cable trays, piping, etc.

TECHNICAL DATA SHEET

Applications and intended use

Underground:

non-cracked concrete, light-concrete, porous-concrete, solid masonry, hollow brick, natural stone (Attention! natural stone, can discolour; shall be checked in advance); hammer drilled holes

Anchor elements:

Threaded rods (zinc plated or hot dip, stainless steel and high corrosion resistance steel), reinforcing bars, internal threaded rods, profiled rod, steel section with undercuts (e.g. perforated section)

• Temperature range:

Installation temperature +5°C up to +35°C cartridge temperature min. +5°C; optimal +20°C -40°C to +80°C ambience temperature after full curing

Handling and storage

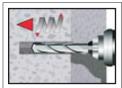
Storage:

store in a cold and dark place, storage temperature: from +5°C up to +25°C

• Shelf life:

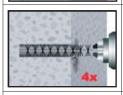
12 months for standard cartridge (ST); 9 months for foil tube cartridge (SF)

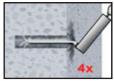
Reactivity


Temperature of base material	Gelling- and working time	Full curing time in dry base material	Full curing time in wet base material
+5°C	25 Min.	120 Min.	240 Min.
+10°C	15 Min.	8o Min.	160 Min.
+20°C	6 Min.	45 Min.	90 Min.
+30°C	4 Min.	25 Min.	50 Min.
+35°C	2 Min.	20 Min.	40 Min.

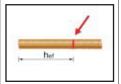
TECHNICAL DATA SHEET

Usage instructions - concrete


1 Drill with hammer drill mode a hole into the base material to the size and embedment depth required by the selected anchor.


or

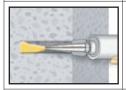
2a. Standing water must be removed bevor cleaning. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air or a hand pump a minimum of four times. If the bore hole ground is not reached an extension shall be used. The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger then 20mm or deeper then 240mm, compressed air (min. 6 bar) must be used.


2b. Check brush diameter acc. to table 5 and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used.

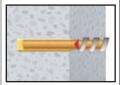
2c. Finally blow the hole clean again with compressed air or a hand pump a minimum of four times. If the bore hole ground is not reached an extension shall be used. The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger then 20mm or deeper then 240mm, compressed air (min. 6 bar) must be used.

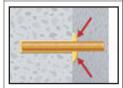
3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time as well as for new cartridges, a new static-mixer shall be used.

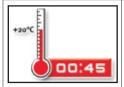
4. Prior to inserting the anchor rod into the mortar filled bore hole, the position of the embedment depth shall be marked on the anchor rods.



TECHNICAL DATA SHEET


Usage instructions - concrete

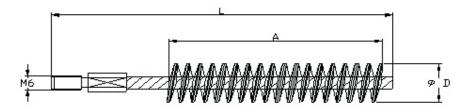

5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.


6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. Observe the gel-/ working times given.

7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.

8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed.

9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured.


10. After full curing, the add-on part can be installed with the max. torque by using a calibrated torque wrench.

TECHNICAL DATA SHEET

Cleaning of the drill hole - concrete

Brush:

Ø 0,20 mm (A2) Steel wire Brush length: 80 mm M6 thread for drilling machine

Blower

Threaded rod	Bore hole-Ø	Brush-Ø	min. brush-Ø	Brush length
(mm)	(mm)	d _b (mm)	d _{b,min} (mm)	L (mm)
M 8	10,0	12,0	10,5	170
M 10	12,0	14,0	12,5	170
M 12	14,0	16,0	14,5	200
M 16	18,0	20,0	18,5	300
M 20	24,0	26,0	24,5	300

Setting parameter - concrete

Anchor size					M10	M12	M16	M20
Edge distance	1,0 x h _{ef}	C _{cr₁N}	[mm]	80	90	110	125	170
Min. edge distance	5,0 x d	C _{min}	[mm]	40	50	60	80	100
Axial distance	2,0 x h _{ef}	S _{cr,N}	[mm]	160	180	220	250	340
Min. axial distance	5,0 x d	S _{min}	[mm]	40	50	60	80	100
Embedment depth		h _{ef}	[mm]	80	90	110	125	170
Min. part thickness		h _{min}	[mm]	h _{ef} + 30 mm			h _{ef} + 2d _o	
Anchor diameter		d	[mm]	8	10	12	16	20
Drill diameter		d _o	[mm]	10	12	14	18	24
Installation torque		T _{inst.}	[Nm]	10	20	40	60	120

TECHNICAL DATA SHEET

Performance data - concrete

TENSION LOADS - Design method A acc. to ETAG 001 Annex C, characteristic values for tension loading

Anchor size					M10	M12	M16	M20
Steel failure								
Characteristic tension plated or hot dip, prop		$N_{ m Rk,s}$	[kN]	18	29	42	78	122
Characteristic tension plated or hot dip, prop	·	N _{Rk,s}	[kN]	29	46	67	125	196
Partial safety factor		$\gamma_{Ms,N}$				1,50		
Characteristic tension steel A4 and HCR	resistance, Stainless	N _{Rk,s}	[kN]	26	41	59	110	172
Partial safety factor		$\gamma_{Ms,N}$				1,87		
Pullout and concrete co	one failure 1)							
Characteristic bond res	sistance in concrete C20	/25						
50°C/80°C²)	uncracked concrete	$N_{Rk,p} = N_{Rk,c}^{o}$	[kN]	11	17	24	27	46
Partial safety factor (dry and wet)		$\gamma_{Mp} = \gamma_{Np}$	Мс			1,8		
Embedment depth		h _{ef}	[mm]	80	90	110	125	170
Edge distance		C _{cr,N}	[mm]	80	90	110	125	170
Axial distance		S _{cr,N}	[mm]			2 X C _{cr,N}		-
Increasing factors for n ψ_{c}	on-concrete concrete			(f _{ck} ^{0,30})/2,63				
Splitting failure								
Edge distance		C _{cr,sp}	[mm]	$c_{cr,N} \le 2 h_{ef} (2,5 - h/h_{ef}) \le 2,4 h_{ef}$				
Axial distance		S _{cr,sp}	[mm]	2 X C _{cr,sp}				
Partial safety factor (dry and wet)		γ_{Msp}			1,8			

The data in this table are intended to use together with the design provisions of ETAG oo1 Annex C

- 1) shall be determined acc. this table or acc. to 5.2.2.4, Annex C of ETAG oo1. The smaller value is decisive.
- 2) short term temperature / Long term temperature . Long term concrete temperatures are roughly constant over significant periods of time. Short term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

TECHNICAL DATA SHEET

Performance data - concrete

SHEAR LOADS - Design method A acc. to ETAG 001 Annex C, characteristic values for shear loading

Anchor size			M8	M10	M12	M16	M20	
Steel failure without leaver arm		'					1	
Characteristic shear resistance, Steel, zinc plated or hot dip, property class 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	
Characteristic shear resistance, Steel, zinc plated or hot dip, property class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	
Partial safety factor	γ _M	ls,V			1,25			
Characteristic shear resistance, Stainless steel A4 and HCR	V _{Rk,s}	[kN]	13	20	30	55	86	
Partial safety factor	γ _M	ls,V			1,56			
Steel failure with leaver arm								
Characteristic bending moment, Steel, zinc plated or hot dip, property class 5.8	M° Rk,s	[Nm]	19	37	65	166	324	
Characteristic bending moment, Steel, zinc plated or hot dip, property class 8.8	M° Rk,s	[kN]	30	60	105	266	519	
Partial safety factor	γ _M	ls,V	1,25					
Characteristic bending moment, Stainless steel A4 and HCR	M° Rk,s	[kN]	26	52	92	232	454	
Partial safety factor	γ _M	ls,V	1,56					
Concrete Pryout failure								
Factor k					2,0			
Partial safety factor	γ_N	Лср			1,5			
Concrete edge failure								
Effective length of anchor in shear loading	l _f	[mm]	80	90	110	125	170	
Outside diameter of anchor	d _{nom}	[mm]	10	12	14	18	24	
Partial safety factor	γ_{Mc}				1,5			

The data in this table is intended to used together with the design provisions of ETAG oo1 Annex C.

TECHNICAL DATA SHEET

Recommended loads - concrete

The recommended loads are only valid for single anchor for a roughly design, if the following conditions are valid:

dry or wet bore hole, uncracked concrete C20/25, steel 5.8

 $c \ge c_{cr,N}$

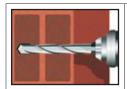
 $\begin{array}{l} s \, \geqq \, s_{\text{cr,N}} \\ h \, \geqq \, 2 \, x \, h_{\text{ef}} \end{array}$

If the conditions are not fulfilled the loads must be calculated acc. to ETAG 001 Annex C.

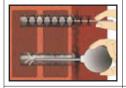
The safety factors are already included in the recommended loads.

Anchor size				M10	M12	M16	M20
Embedment depth	h _{ef}	[mm]	80 90 110 125				170
Edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}				
Axial distance	S _{cr,N}	[mm]	3,0 x h _{ef}				
Recommended tension load 50°C/80°C ²⁾	N _{Rec}	[kN]	4,5	6,9	9,6	10,8	18,1
Recommended shear load without leaver arm for Steel property class 5.81)	V _{Rec}	[kN]	5,1 8,6 12,0 22,3 34,5				34,9

¹⁾ Shear load with leaver arm acc. Annex C of ETAG 001.

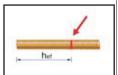


²⁾ short term temperature / Long term temperature. Long term concrete temperatures are roughly constant over significant periods of time. Short term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.



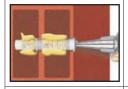
TECHNICAL DATA SHEET

Usage instructions - hollow bricks


1. Drill without hammer drill mode a hole into the base material to the size and embedment depth required by the selected anchor.


2. In case of a water filled bore hole, the water has to be removed from the hole (e.g. by compressed air or vacuum cleaner). Starting from the bottom or back of the hole, blow the hole clean with a hand pump a minimum of two times. Then brush the hole with nylon brush a minimum of two times. Finally clean the hole again with a hand pump a minimum of two times.

3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. After every working interruption longer than the recommended working time as well as for new cartridges, a new static-mixer shall be used.


4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

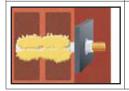
5. Prior to dispensing the mortar into the bore hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.

6. Insert the perforated sleeve into the bore hole. Make sure that the sleeve fits well into the hole. Never cut the sleeve! Only use sleeves that have the right length.

7. Starting from the back fill the sleeve completely with adhesive. Observe the gel-/ working times.



8. Push the threaded rod or reinforcement bar into the sleeve while turning it slightly to ensure a distribution of the adhesive until the back of the sleeve is reached. The anchor should be free of dirt, grease, oil or other foreign material.



TECHNICAL DATA SHEET

9. Allow the adhesive to cure to the specified time prior to applying any load to torque. Do not move or load the anchor until it is fully cured.

10. After full curing, the add-on part can be installed with the max. torque by using a calibrated torque wrench.

Cleaning - masonry

Brush: 20 mm Nylon; Length: 80 mm

TECHNICAL DATA SHEET

Performance data - masonry

Stone	Strength class	Recommended		Recommended Standard sleeves					Wing sleeve	
		load	S	M6	M8	M10	M12	M8	M10	
	Hlz 4			0,3	0,3	0,3	0,3	0,3	0,3	
Hollow brick	Hlz 6	F_{rec}	[kN]	0,4	0,4	0,4	0,4	0,4	0,4	
	Hlz 12	100		0,7	0,8	0,8	0,8	0,8	0,8	
	KSL 4			0,3	0,3	0,3	0,3	0,3	0,3	
Sand -lime hol- low brick	KSL 6	F _{rec}	[kN]	0,4	0,4	0,4	0,4	0,4	0,4	
tow brick	KSL 12			0,7	0,8	0,8	0,8	0,8	0,8	
Sand -lime solid brick ¹⁾	KS 12	F _{rec}	[kN]	0,5	1,7	1,7	1,7	1,7	1,7	
Solid brick ¹⁾	Mz 12	F _{rec}	[kN]	0,5	1,7	1,7	1,7	1,7	1,7	
Light concrete	Hbl 2	F	[kN]	0,3	0,3	0,3	0,3	-	-	
hollow brick	Hbl 4	r _{ec}	[KN]	0,5	0,6	0,6	0,6	•	-	
Concrete hollow brick	Hbn 4	F _{rec}	[kN]	0,5	0,6	0,6	0,6	-	-	

Installation parameters										
Axial distance plu	g group	S _{cr,N Group}	[mm]	Hlz, KSL, MZ, KS = 100 Hbl, Hbn = 200			100			
Min. axial distanc	e plug group²)	S _{min Group}	[mm]		KSL, N Ibl, Hb		_	5	50	
Axial distance bet	tween single plugs	S _{cr,N Single}	[mm]		2 5	50		2 5	50	
Edge distance		C _{cr,N}	[mm]		25	50		200 (250) ³⁾	
Min. edge distance ⁴⁾		C _{min}	[mm]		25	50		50 (60) ³⁾		
Embedment	with sleeve	h _{ef}	[mm]	50	85	85	85	80	90	
depth of rod	without sleeve	h _{ef}	[mm]	60	80	90	110	80	90	
Drilling donth	with sleeve	h _o	[mm]	55	90	90	90	105	105	
Drilling depth	without sleeve	h _o	[mm]	65	85	95	115	85	95	
Minimum part thi	ckness	h _{min}	[mm]		110 125		125	11	10	
Drill diameter		d _o	[mm]	11	16	16	16	14	16	
Hole diameter in fixed element		d _f	[mm]	7	9	12	14	9	12	
Installation torqu	e	T _{inst}	[Nm]	3	8	8	8	2	2	

¹⁾ Anchoring in masonry of solid lime-sand bricks (KS) and masonry bricks (Mz) does not require perforated sleeve.

⁴⁾ Applies to masonry with top load or proof of tilt. Does not apply to shear loads directed towards a free edge.

²⁾ It is permissible to go below the axial spacing to the minimum value for anchor pairs and groups of four, if the permissible loads are reduced. The maximum loads must not be exceeded.

³⁾ Value in brackets applies to solid bricks (Mz and KS).

TECHNICAL DATA SHEET

Performance data - masonry

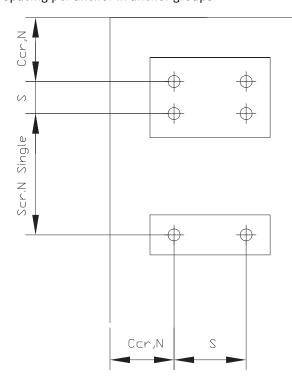
Reduced permissible loads with reduced axial spacing per anchor in anchor groups

$$S_{cr,N Group} \ge S > S_{min}$$

Anchor pairs:

 $red F = \chi s \cdot F rec$

 $\chi S = \frac{1}{2} (1 + S/S_{cr, N Group}) \le 1,0$


Groups of four:

red $F = \chi s_1 \cdot \chi s_2 \cdot F \text{ rec}$ $\chi s_{1,2} = \frac{1}{2} (1 + s_{1,2} / s_{cr, N \text{ Group}}) \le 1,0$

= Permissible load per anchor

= Reduced load per anchor

s_{cr,N Group} = Axial spacing = Reduced axial spacing

Permissible load in [kN] for each single brick									
Brick format		< 4 DF	4 bis 10 DF	≥ 10DF					
Without top load	max F [kN]	1,0	1,4	2,0					
With top load	max F [kN]	1,4	1,7	2,5					